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Abstract This paper is concerned with finding uniformly valid polynomial solutions to two-point boundary-layer
problems for ordinary differential equations using two-point Hermite expansions. First it is shown that a direct
method, generalised to include the fitting of different orders of derivatives at the end points of the interval, fails
as the small parameter in the problem becomes small. A novel two-scale approach is used to obviate this failure
which is caused by the singular behaviour of the solution and its derivatives in the boundary layer. The method
is introduced and illustrated by a series of examples. It is believed that with the use of a symbolic computational
facility such as MAPLE the technique is a viable and competitive alternative to the classical methods of matched
expansions and multiple scales.

Keywords Asymptotics · Boundary layers · Boundary-value problems · Hermite interpolation ·
Singular perturbations

1 Introduction

In recent years the author has applied global Hermite interpolation to a variety of boundary-value problems for
ordinary and partial differential equations ([1–4]) and earlier to ordinary differential equations [5]. The aim of the
present paper is to use these ideas to construct uniformly valid polynomial solutions to ordinary boundary-value
problems containing a small parameter and which exhibit a boundary layer. In particular, we consider model
problems of the form

εy′′ + a(x, ε)y′ + b(y, x, ε) = 0, y(0) = α, y(1) = β, ε > 0 (1.1)

in which ε is small and where a(x, ε) > 0 on [0,1] with the boundary layer located at an end point. We present the
method as a competitive and viable alternative to the classical methods of matched expansion and multiple scales
for such problems. Problems of this type occur in almost every field of applied mathematics, be it fluid dynamics,
biology or science and engineering in general and over the years a number of techniques have been devised to solve
them. The literature on both methodology and applications is extensive wherein the classic books by Van Dyke
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340 R. E. Grundy

[6, Chap. V] and Nayfeh [7, Chaps. 4 and 6] have been superseded and extended by a number of texts such as
Holmes [8, Chaps. 2 and 3] to which the reader is referred for background material on techniques, applications and
historical perspective.

The outline of the paper is as follows. In Sect. 2 we explain what we mean by Hermite expansions and give
algorithms for their construction together with a discussion of the convergence theory in the complex plane. In
Sect. 3 a direct method using Hermite expansions, introduced by Grundy [1], is shown to fail as ε is reduced toward
zero. However, we are able to get round the difficulty using a two-scale approach which enables the limit ε → 0 to
be taken. In Sect. 4 we develop this method via a series of examples which are intended to illustrate the accuracy
and applicability of the technique. We compare our results with numerical solutions and also with the classical
method of multiple scales [7, Chap. 6]. Throughout the paper MAPLE is used as an indispensable facilitator of the
algebraic manipulations and also as a rootfinder and BVP/IVP solver.

2 Two-point Hermite expansions

A Hermite expansion [9] of a function f (x) can be regarded as a generalisation of a Taylor expansion. If we look
upon the Taylor expansion as fitting derivatives of the function at a single given point, then the Hermite expansion
performs the same role at any number of given points. In this paper we are particularly interested in constructing
expansions which fit derivatives at two such points. These expansions are sometimes referred to as two-point Taylor
expansions.

The first question we address is how do we construct the two-point analogue of the Taylor polynomials, namely
polynomials whose derivatives up to prescribed orders fit the corresponding derivatives of a given function f (x) at
two points which, without loss of generality, we may take to be x = 0 and x = 1. In general, the orders of derivatives
fitted may be different, so we are seeking a polynomial HN (x) of degree N such that

H (k)
N (0) = f (k)(0), k = 0, 1, . . . . . . , n0 − 1 (2.1)

and

H (k)
N (1) = f (k)(1), k = 0, 1, . . . . . . , n1 − 1. (2.2)

where N = n0 + n1 − 1. The fact that such a polynomial exists and is unique is well known (See for example Davis
[10, Chaps. 3 and 4]) as is an algorithm for its construction (Stoer and Bulirsch [11, pp. 52–54]). This algorithm
can be written in the form

HN (x) =
n0−1∑

j=0

L0 j (x) f ( j)(0) +
n1−1∑

j=0

L1 j (x) f ( j)(1). (2.3)

where the Li j are given by

L0,n0−1 = l0,n0−1, L1,n1−1 = l1,n1−1

and for k0 = n0 − 2, n0 − 3, . . . . . . . . . , 0,

L0k0 = l0k0 −
n0−1∑

v=k0−1

l(v)
0k0

(0)L0v

while for k1 = n1 − 2, n1 − 3, . . . . . . . . . , 0,

L1k1 = l1k1 −
n1−1∑

v=k1+1

l(v)
1k1

(1)L1v

In the above

l0 j = x j (1 − x)n1

j ! , 0 ≤ j ≤ n0

and
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Fig. 1 The critical ovals
Oµ for ______ µ = 1, __
__ __ µ = 2/3, _ _ _ _ µ =
1/2, . . . . . . . . . µ = 1/3

l1 j = (x − 1) j xn0

j ! , 0 ≤ j ≤ n1.

The representation (2.3), which is systematically programmable, is called the two-point Hermite interpolating
polynomial of f (x). We note for future reference that (2.3) can be written directly in terms of the Taylor coefficients
of f (x) at x = 0 and x = 1 via their relationship with the derivatives.

If we regard (2.3) as an expansion of f (x), then one can construct an expression for the remainder rN in the
form

rN = f (x) − HN (x) = f (N+1)(ξ)xn0(x − 1)n1

(N + 1)! , (2.4)

which is analogous to the Taylor-expansion remainder. It turns out that an associated convergence theory can be
developed for Hermite expansions in the complex plane in the limit n0 → ∞ and n1 → ∞. This theory is well
known when n0 = n1 and the number of terms fitted at each end point is the same, (See for example the book by
Davis [10] or more recently the paper of Lopez and Temme [12]). However, what appears to be less appreciated is
that it is possible, by fitting different numbers of terms at the end points, to consider more general expansions in
which n0 and n1 approach infinity at different rates. Let us suppose that we take the limit n → ∞ such that n0 = np
and n1 = nq where p and q are prescribed integers such that µ= p/q is in its lowest terms. When µ= 1, it is known
that the domain of convergence of the corresponding Hermite expansion is the interior of the maximal Cassini oval,
with foci at z = 0 and z = 1 and symmetric about z = 1/2, within which f (z) is analytic. Significantly, however,
for µ �= 1 these become generalised Cassini ovals and are no longer symmetric about z = 1/2; hence the domains
of convergence are different. If these ovals contain the interval [0,1] on the real axis, the relevant Hermite expansion
will certainly converge on that interval. Thus we identify in Fig. 1, for various values of µ, the critical ovals Oµ

which just contain the interval [0,1]. If f (z) has singularities inside an Oµ, the corresponding Hermite expansion
will fail to converge throughout the interval [0,1], since in that event the Cassini ovals have disjoint branches and
do not include the whole of [0,1].

For future reference we note that the Hermite expansion of an entire function will converge everywhere. Since the
domains of convergence can be modified by allowing µ �= 1, this gives us more flexibility regarding the maintenance
of convergence when singularities are present or, as we shall see later, the acceleration of convergence for entire
functions. Further details of the convergence theory when µ �= 1 are given in [13], but we give an outline of the
main convergence result in Appendix 1.
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342 R. E. Grundy

3 Application to the solution of second-order boundary-value problems

We consider the boundary-value problem (1.1), namely

εy′′ + a(x, ε)y′ + b(y, x, ε) = 0 (3.1)

y(0) = α, y(1) = β, (3.2)

where ε > 0.

A direct application of Hermite interpolation involves replacing y(x), or an equivalent formulation of it, by an
HN (x) of the form (2.3); see [1]. The first step is to write down the Taylor series for y(x) about x = 0 and x = 1.
From (3.1) these are

y(x) = α + a1(ε)x +
∞∑

i=2

ai (a1(ε), ε) xi (3.3)

and

y(x) = β + (x − 1)b1(ε) +
∞∑

i=2

bi (b1(ε), ε)(x − 1)i , (3.4)

in which the coefficients ai (ε) and bi (ε), i ≥ 2, depend on the two unknown coefficients a1(ε) and b1(ε) as
indicated. We now construct an HN (x) from (3.3) and (3.4) of the form (2.3) and use it as a replacement in the
problem defined by (3.1) and (3.2).

We have found that, in general, accuracy is improved by recasting (3.1) and (3.2) into an integral formulation
rather than using (3.1) itself, so we start off by integrating (3.1) to obtain

εy′(x) + a(x, ε)y(x) − εa1 − a(0, ε)α +
∫ x

0

{
b(y(s), s, ε) − y(s)

da(s, ε)

ds

}
ds = 0 (3.5)

and again to get

εy(x) − εα − xεa1 − a(0, ε)αx +
∫ x

0
a(s, ε)y(s)ds +

∫ x

0
(x − s)

{
b(y(s), s, ε) − y(s)

da(s, ε)

ds

}
ds = 0. (3.6)

Putting x = 1 in (3.5) and (3.6) gives

ε(b1 − a1) + a(1, ε)β − a(0, ε)α +
∫ 1

0

{
b(y(s), s, ε) − y(s)

da(s, ε)

ds

}
ds = 0 (3.7)

and

ε(β − α) − εa1 − a(0, ε)α +
∫ x

0
(x − s)

{
b(y(s), s, ε) − y(s)

da(s, ε)

ds

}
ds = 0. (3.8)

We now replace y(s) in (3.7) and (3.8) by an HN (x) which generates the required two equations for the unknown
pair {a1(ε), b1(ε)}. Once these are found we may construct the desired Hermite interpolant from (3.7) and complete
what we refer to as the direct method.

Before going any further, we make some comments regarding the general applicability of the direct method in
the light of the convergence theory for Hermite expansions alluded to in Sect. 2 and also how it compares with
other methods for constructing polynomial solutions to boundary-value problems. For linear equations we can
immediately locate the singularities of the solution in the complex plane from the equation itself. If any of these
singularities lie within a critical oval, the corresponding Hermite expansion will not converge on the whole of the
interval [0,1] and the method will fail, although we do have an inbuilt flexibility since we can modify the convergence
domain via the choice of µ. For equations with no singular points in the finite complex plane the solutions will be
entire functions and there will be no problem regarding convergence, although the rate of convergence may be an
issue. For nonlinear problems the situation is less clear cut since we do not know in advance the position of any
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Uniformly valid polynomial representations 343

singularities. We will say more about this when we consider a nonlinear example in Sect. 4.3. A detailed discussion
of how singularities may affect the implementation of the direct method is given in [13].

The convergence difficulties when singularities are present is an important consideration when we consider
comparable methods for the construction of solutions of boundary-value problems. These alternatives usually
involve collocation of Chebychev or Legendre expansions at the zeros of the respective orthogonal polynomials.
Provided the solution is not singular on [0,1] itself, these methods will always converge irrespective of the location
of complex singularities although rates of convergence can be adversely affected if singularities encroach too close.
However, we would like to point out that these methods have a distinct drawback when compared with methods
involving Hermite expansions. For Hermite expansions the number of unknowns is fixed, being independent of the
order of the expansion, whereas in collocation at selected points the number of unknowns increases with the order
of the expansion. This is of particular importance for rootfinding involved in solving nonlinear problems.

In the linear examples which follow we are specifically dealing with boundary-layer problems in which the
solutions are entire functions, so we have no difficulty with complex singularities. However, even though the
solutions to such problems converge everywhere in the complex plane, rates of convergence become problematical
due to the essential singularity involving e−x/ε as ε → 0. For the nonlinear example there is a singularity outside
the interval [0,1] but it can be excluded by a suitable choice of µ. As we shall see, a judicious choice of µ can
significantly improve rates of convergence for both linear and nonlinear problems.

To illustrate how we implement the above direct method for problems like (1.1), we consider a specific example

εy′′ + (1 + ε)y′ + y = 0, y(0) = 0, y(1) = 1

for which a(x, ε) = 1 + ε, b(y, x, ε) = 1, α = 0 and β = 1. This problem has the exact solution

y(x) = e−x − e−x/ε

e−1 − e−1/ε
. (3.9)

We present the results for the direct method in the upper half of Table 1 for various values of ε.
Note that here and throughout the paper we round to five significant figures and, in order to give a visual impression

of the convergence with n, bold digits represent ‘unconverged digits’. We observe that we can take µ = p/q = 1
down to ε = 0.1 and retain acceptable convergence. The essential singularity at infinity then becomes too severe.
However, we can maintain a practical rate of convergence and reduce ε to 0.01 by taking µ = 1/3 and weighting
x = 1, being the end point closest to the essential singularity. Nevertheless, the direct method will ultimately fail
as a practical option for sufficiently small ε. The purpose of this paper is to show how we can obviate this failure
and adapt the direct method to construct solutions for values of ε as small as we please.

The difficulty clearly arises from the nonuniformity in the boundary layer, located where x = O(ε), wherein
derivatives of all orders become large thereby increasing the error without bound as ε → 0. To deal with this we
introduce a second independent variable

z = x

ε
(3.10)

and regard the independent variable as a function of x and z. We then follow the usual multiple scales philosophy
and write

y(x) ≡ Y (x, z)

recasting (1.1) as

∂2Y

∂z2 + (ε + 1)
∂Y

∂z
+ ε2 ∂2Y

∂x2 + ε(ε + 1)
∂Y

∂x
+ εY + 2ε

∂2Y

∂x∂z
= 0. (3.11)

The novelty now is to expand

Y (x, z) =
∞∑

i=0

Ai (z, ε)xi (3.12)
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Table 1 Results for εy′′ + (ε + 1)y′ + y = 0, y(0) = 0, y(1) = 1 as ε is reduced

ε µ n y′
A(0) y′

A(1) yA(0.05) yA(0.5) Method

0.5 1 4 4.3003 −.41799 .19950 1.0263 Direct

6 4.3003 −.41802 .19950 1.0263

8 4.3003 −.41802 .19950 1.0263

Exact 4.3003 −.41802 .19950 1.0263

0.1 1 8 24.468 −.99877 .93711 1.6307

10 24.468 −.99889 .93710 1.6306

12 24.468 −.99889 .93710 1.6306

Exact 24.468 −.99889 .93710 1.6306

0.01 1/3 16 269.06 −1.0 1.5669 1.6486

18 269.11 −1.0 2.5674 1.6487

20 269.11 −1.0 2.5674 1.6487

Exact 269.11 −1.0 2.5674 1.6487

0.01 1 2 269.11 −1.0 2.5674 1.6487 Two-scale

3 269.11 −1.0 2.5674 1.6487

0.001 1 2 2715.6 −1.0 2.5857 1.6487

3 2715.6 −1.0 2.5857 1.6487

Exact 2715.6 −1.0 2.5857 1.6487

In this and the following tables the direct method fits np and nq terms of the Taylor series at x = 0 and x = 1, respectively, where
µ = p/q in its lowest terms. The degree of the resulting Hermite expansion is given by N = n(p + q) − 1. The two-scale method fits
n + 1 terms of each of the series (3.12) and (3.13): the degree of the resulting polynomial is 2n + 1 in x

about x = 0 in which the series coefficients are functions of z. The series about x = 1, however, need not contain
a z-dependence, so we write as in (3.4)

Y (x, z) = 1 + B1(ε)(x − 1) +
∞∑

i=2

Bi (B1(ε), ε)(x − 1)i (3.13)

in which B1(ε) is the only unknown. We now substitute (3.12) in (3.11) to give a hierarchy of equations, {Dn}
n = 0, 1, 2, . . . , for the Ai (x, z) of the form

D0 : {2A2 + A1} ε2 + {
A′

0 + 2A′
1 + A0 + A1

}
ε + A′′

0 + A′
0 = 0, (3.14)

D1 : {6A3 + 2A2} ε2 + {
A′

1 + 4A′
2 + A1 + 2A2

}
ε + A′′

1 + A′
1 = 0, (3.15)

D2 : {12A4 + 3A3} ε2 + {
A′

2 + 6A′
3 + A2 + 3A3

}
ε + A′′

2 + A′
2 = 0, (3.16)

etc.
where primes denote derivatives with respect to z.

The idea now is to expand the Ai in powers of ε in such a way that secular terms on the z scale in such a series
are eliminated in the limit z → ∞. Thus we write

Ai (z, ε) = Ai0(z, ε) + εAi1(z, ε) + ε2 Ai2(z, ε) + · · · · . (3.17)

To illustrate how we compute the Ai j (z, ε) let us suppose we wish to construct an H5(x, z) with n0 = n1 = 2
from (3.12) and (3.13). To do this we need to obtain the coefficients Ai (z, ε), i = 0, 1, 2. Now with (3.17) we can
only obtain closed systems for these coefficients if we use (3.14) to O(ε2), (3.15) to O(ε) and (3.16) to O(1). This
implies that in such a scheme we can only derive the truncated forms

A0(z, ε) = A00(z, ε) + εA01(z, ε) + ε2 A02(z, ε), (3.18)
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A1(z, ε) = A10(z, ε) + εA11(z, ε), (3.19)

A2(z, ε) = A20(z, ε). (3.20)

With αi j (ε) and βi j (ε) arbitrary constants of integration in what follows, we now work sequentially to compute
A0(z, ε), A1(z, ε) and A2(z, ε). The sequence of operations in what follows are indicated in bold type.

(3.14) to O(1): A′′
00 + A′

0 = 0,

giving A00 = α00 + β00e−z .
(3.21)

(3.15) to O(1): A′′
10 + A′

10 = 0,

giving A10 = α10 + β10e−z .
(3.22)

(3.16) to O(ε): A′′
01 + A′

01 = −A′
00 − 2A′

10 − A00 − A10 = (α00 + α10) + β10e−z,

using (3.21) and (3.22). Eliminating secular terms from A01 requires

α10 = −α00, β10 = 0 (3.23)

and so we can write

A01 = α01 + β01e−z (3.24)

(3.14) to O(1): A′′
20 + A′

20 = 0,

giving A20 = α20 + β20e−z .
(3.25)

(3.13) to O(ε): A′′
11 + A′

11 = −4A′
20 − A′

10 − 2A20 − A10 − (α10 + 2α20) + 2β20e−z,

using (3.22), (3.23) and (3.25). Eliminating secular terms in A11 then requires

α20 = −α10

2
= α00

2
, β20 = 0 (3.26)

and hence

A11 = α11 + β11e−z (3.27)

(3.14) to O(ε2) : A′′
02 + A′

02 = −A′
01 − 2A′

11 − A01 − A11 − 2A20 − A10

= − (2α20 + α10 + α01 + α11) − (2β20 + β10 + β11) e−z

= − (α01 + α11) − β11e−z,

using (3.24–3.27). Eliminating secular terms requires

α11 = −α01, β11 = 0 (3.28)

so that

A02 = α021 + β02e−z, (3.29)

which completes the secularity elimination procedure.
We now observe that A0(z) can be written as

A0(z) =
2∑

i=0

(
αi0 + βi0e−z) εi ,

so the sum can be telescoped into a single leading term

A0(z) = α00(ε) + β00(ε)e
−z, (3.30)
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effectively putting

α0i = β0i = 0, i = 0, 1, 2

for all i in what has gone before. Furthermore from (3.30) the boundary condition at x = z = 0 gives

β00 = −α00, (3.31)

so that the secularity conditions (3.23), (3.26), (3.28) become

α10 = −α00, α20 = α00

2
, α11 = 0; β10 = β20 = β11 = 0.

Thus, all the coefficients in (3.18–3.20) and hence in the series (3.12) depend on the single unknown α00(ε).
Recalling that the series (3.13) about x = 1 contains only the single unknown B1(ε), we observe that the resulting
two-point expansion H5(x, z; ε) depends solely on the unknown pair {α00(ε), B1(ε)} and can be written in the form

H5(x, z) = α00(1 − e−z) − α00x + 1

2
α00x2 + x3

{
1 + B1

2ε
+ 9B1 − 20 + α00(11 − 20e−z)

}

+ x4
{

1 + B1

ε
+ 16B1 − 30 + α00(17 − 30e−z)

}

−x5
{

1 + B1

2ε
+ 7B1 − 12 + α00(7 − 12e−z)

}
. (3.32)

With the help of a computational facility such as MAPLE the above scheme can be used to construct any HN (x)

with n0 = n1 = n. Thus, with

Ai (z, ε) =
n−i∑

k=0

Aikε
k (3.33)

and

Aik = αik + βike−z (3.34)

the systematically programmable scheme for substituting the {An(z, ε)} in the {Dn} for n = 0, 1, 2, 3, . . . and
computing all the αi j and βi j in terms of α00 and β00 by eliminating secular terms is presented in Table 2.

Since the boundary condition at x = 0 gives β00 in terms of α00, it only remains to compute the unknown pair
{α00(ε), B1(ε)}.

We do this by following the procedure used in the direct method but now starting from (3.11). Integrating with
respect to the slow variable from 0 to x and applying the boundary conditions at x = 0 we have

ε2 ∂Y

∂x
− ε2 A1 + ε(ε + 1)Y − A0ε(1 + ε) + 2ε

∂Y

∂z
− 2εA′

0 +
∫ x

0

{
∂2Y

∂z2 + (1 + ε)
∂Y

∂z
+ εY

}
ds = 0. (3.35)

Table 2 Programmable sequential procedure for the elimination of secular terms which generate the Ai j and Bi j in terms of α00 and β00

O(1) O(ε) O(ε2) ..... O(εn)

D0 1 3 6 … n(n+3)
2 + 1

D1 2 5 ....... n(n+3)
2

D2 4 ........ . . .

. . .......... n(n+1)
2 + 2

Dn
n(n+1)

2 + 1

The tabulated numbers indicate the order in which powers of ε are equated in the Dn
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A second integration with respect to x gives

ε2Y − ε2 A0 − ε2 A1x + ε(ε + 1)A0x − 2εA′
0x

+
∫ x

0

{
(x − s)

(
∂2Y

∂z2 + (ε + 1)
∂Y

∂z
+ εY

)
+ ε(ε + 1)Y + 2ε

∂Y

∂z

}
ds = 0, (3.36)

where primes denote ordinary derivatives with respect to z. We now apply the boundary conditions at x = 1 by
putting x = 1, z = 1/ε in the above integral forms. On replacing Y (·, z) by HN (·, z) we obtain two equations
for the two unknowns pair {α00(ε), B1(ε)}. The solution of which enables us to complete the construction of the
required polynomial.

As a check on the above calculation and to put things into perspective, we compute the various coefficients for
the above example from the exact solution (3.9). Here

Y (x, z) = e−x − e−z

e−1 − e−1/ε

Expanding this about x = 0, according to (3.12) we have

A0(z, ε) = 1 − e−z

e−1 − e−1/ε
, A1(z, ε) = − 1

e−1 − e−1/ε
, A2(z, ε) = 1

2(e−1 − e−1/ε)
,

so that

A00(z, ε) = 1 − e−z

e−1 − e−1/ε
, A01(z, ε) = A02(z, ε) = 0,

A10(z, ε) = − 1

e−1 − e−1/ε
, A11(z, ε) = 0, A20(z, ε) = 1

2(e−1 − e−1/ε)
,

which checks with our analysis giving

α00(ε) = 1

e−1 − e−1/ε
.

Finally, expanding the exact solution (3.9) about x = 1, we have

B1(ε) = e1−1/ε − ε

ε(1 − e1−1/ε)
.

We present the results of our calculations using the two-scale method for this example in the lower half of Table 1.
The effectiveness of the method is clearly apparent as ε → 0.

This procedure can be immediately extended, with comparable results, to linear equations where a(x, ε) is a
constant but b(y, x, ε) has an x-dependence and an example of this is given later. When a(x, ε) depends on x,

some modification is necessary but the method still works well. The method can also be used when b(y, x, ε)

has a nonlinear dependence on y, although some non-trivial modifications have to be made. We illustrate these
generalisations in the examples below where we compare our method with the orthodox method of multiple scales
(See Appendix 2). Since in constructing an HN (x, z) we neglect terms of O(ε) in An0 , it would seem appropriate
to compare with the zero-order multiple-scales result which is what we do in the tables. We discuss this further in
Sect. 5. We remark that the two-scale method is more general in some respects than the classical multiple-scales
method. Even for linear equations it is not always possible to explicitly solve in closed form the ordinary differential
equations which arise in that method and which govern the long-scale variation. In such cases it is often extremely
awkward, even with the help of a tool such as MAPLE, to extend the solution to high order in ε. The same comment
goes for the method of matched expansions where we are faced with the additional problem of doing the matching
which is difficult to perform in any systematically programmable way, particularly to high order.
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4 Some illustrative examples

4.1 b(y, x, ε) has an x-dependence

Here we consider the linear problem

εy′′ + y′ − xy = 0, y(0) = y(1) = 1 (4.1)

where ε > 0. The direct method can be applied immediately and the effect of reducing ε is revealed in the upper
half of Table 3 where we can reduce ε to 0.01 by taking µ = 1/4.

As far as the two-scale method is concerned, we observe that there is a boundary layer at x = 0 of thickness O(ε);
consequently we write

y(x, ε) = Y (x, z, ε),

where z = x/ε so that (3.1) becomes

∂2Y

∂z2 + ∂Y

∂z
+ ε2 ∂2Y

∂x2 + ε
∂Y

∂x
− εxY + 2ε

∂2Y

∂x∂z
= 0. (4.2)

We now form the series corresponding to (3.12) and (3.13) and follow the procedure outlined in (3.14) to (3.36) in
Sect. 3. In this way we may express all the Ai in terms of the single unknown α00(ε). We then construct the integral
forms by integrating (4.2) with respect to the slow variable from 0 to x and replacing Y (·, z, ε) with a HN(·, z, ε)
to give

Table 3 Results for εy′′ + y′ − xy = 0, y(0) = y(1) = 1 as ε is reduced compared with the numerical solution to the problem (Num)
and zero-order multiple-scales solution (ms0)

ε µ n y′
A(0) y′

A(1) yA(0.05) yA(0.5) Method

0.5 1 2 −.45639 .46653 .97830 .88645 Direct

4 −.45481 .46913 .97840 .88658

6 −.45481 .46913 .97840 .88658

Num −.45481 .46913 .97840 .88658

0.1 1/2 4 −3.2851 .84211 .87091 .73562

6 −3.2848 .84222 .87093 .73543

8 −3.2848 .84222 .87093 .73543

Num −3.2848 .84222 .87093 .73543

0.01 1/4 12 −38.563 .98058 .61752 .69262

14 −38.558 .98058 .61758 .69262

16 −38.558 .98058 .61758 .69262

Num −38.558 .98058 .61758 .69262

0.01 2 −38.557 .98077 .61759 .69271 Two-scale

3 −38.557 .98058 .61758 .69262

4 −38.558 .98058 .61758 .69262

Num −38.558 .98058 .61758 .69262

ms0 −39.347 1.0 .60994 .68729

0.001 2 −392.66 .99803 .60808 .68791

3 −392.66 .99801 .60807 .68783

Num −392.66 .99801 .60807 .68783

ms0 −393.47 1.0 .60729 .68729
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ε2
(

∂ HN

∂x
− A1

)
+ ε(HN − A0) +

∫ x

0

{
∂2 HN

∂z2 + ∂ HN

∂z
− εs HN

}
ds = 0, (4.3)

ε2(HN − A0) − ε2x A1 − εx A0 − 2x A′
0 +

∫ x

0

{
(x − s)

(
∂2 HN

∂z2 + ∂ HN

∂z
− εs HN

)
+ 2ε

∂ HN

∂z

}
ds = 0. (4.4)

Applying the boundary condition at the right-hand boundary where x = 1, z = 1/ε finally yields the two equations
which can be solved for the unknown pair {α00(ε), B1(ε)}, which effectively completes the construction of the
required polynomial in powers of x with coefficients functions of z. The results for the two-scale method are
given in the lower half of Table 3 where we compare with the standard zero-order multiple-scales solution given in
Appendix 2 and also the numerical solution.

4.2 a(x, ε) has an x-dependence

The situation when a(x, ε) is not constant is somewhat more involved. This is illustrated by the following example.

εy′′ + (1 + x)y′ + 3y = 0, y(0) = y(1) = 1. (4.5)

As before, the direct method follows the familiar pattern as we attempt to reduce the value of ε and is illustrated in
the upper half of Table 4. Here we can reach ε = 0.01 by taking µ = 1/3.

Table 4 Results for εy′′ + (1 + x)y′ + 3y = 0, y(0) = y(1) = 1 as ε is reduced and comparison with the zero-order multiple-scales
and numerical solution

ε µ n y′
A(0) y′

A(1) yA(0.05) yA(0.5) Method

0.5 1 4 6.8260 −2.1671 1.3165 2.1191 Direct

6 6.8193 −2.1687 1.3162 2.1162

8 6.8193 −2.1687 1.3162 2.1162

Num 6.8193 −2.1687 1.3162 2.1162

0.1 1 8 67.071 −1.7016 3.5652 2.8161

10 67.072 −1.7014 3.5652 2.8164

12 67.072 −1.7014 3.5652 2.8164

Num 67.072 −1.7014 3.5652 2.8164

0.01 1/3 16 697.93 −1.5153 7.1562 2.3991

18 697.93 −1.5153 7.1561 2.3991

20 697.93 −1.5153 7.1561 2.3991

Num 697.93 −1.5153 7.1561 2.3991

ms0 662.00 −1.5000 6.8648 2.3704

0.01 6 697.95 −1.5153 7.1563 2.3990 Two-scale

7 697.93 −1.5153 7.1561 2.3991

8 697.93 −1.5153 7.1561 2.3991

0.001 5 6997.9 −1.5015 6.9397 2.3710

6 6998.1 −1.5015 6.9382 2.3732

7 6998.0 −1.5015 6.9381 2.3731

Num 6998.0 −1.5015 6.9381 2.3731

ms0 6962.0 −1.5000 6.9107 2.3704
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Table 5 Direct method for nonlinear problem for ε = 1 with µ = 1 exhibiting the two solutions to the problem for ε > 0, The S1
solution has converged to five significant figures by n = 6 while the S2 solution converges more slowly and we pick that solution up at
n = 8

n y′
A(0) y′

A(1) yA(0.05) yA(0.5) xs

2 S1 −0.9693 −1.3098 1.9485 1.2626

4 S1 −1.0067 −1.3078 1.9461 1.2652

6 S1 −1.0067 −1.3078 1.9461 1.2652 −2.8341

Num S1 −1.0067 −1.3078 1.9461 1.2652 6.5297

8 S2 34.878 −19.742 3.6927 10.173

10 S2 34.880 −19.743 3.6928 10.174

12 S2 34.881 −19.743 3.6928 10.174 −0.93459

Num S2 34.881 −19.743 3.6928 10.174 2.3855

This solution attains the required convergence at n = 12. MAPLE only computes the numerical solution for S1. The numerical solution
for S2 is obtained by iterative shooting from x = 0 with y(0) = 2, y′(0) = H ′

23(0) . The singularities of S1 and S2 in the complex
plane are shown in the xs column

To take the limit ε → 0 we need to modify the two-scale approach slightly to cope with the x-dependence in
a(x, ε). We first make the change of variable

z = 1

ε

∫ x

0
a(t)dt = x + x2/2

ε
(4.6)

and recast (4.5) with y(x, ε) = Y (x, z, ε) so that it becomes

ε2 ∂2Y

∂x2 + ε(1 + x)
∂Y

∂x
+ 3εY + (1 + x)2

{
∂2Y

∂z2 + ∂Y

∂z

}
+ ε

∂Y

∂z
+ 2ε(1 + x)

∂2Y

∂z∂x
= 0. (4.7)

We now follow the general two-scale procedure except now the right-hand boundary condition is applied, from
(4.6), at x = 1 and z = 3/2ε. The results of the computations are displayed in Table 4 and compared with the
zero-order multiple-scales and the numerical solutions to the problem.

4.3 b(y, x, ε) has a nonlinear dependence on y

The situation wherein b(y, x, ε) is a nonlinear function of y introduces a number of new features to the analysis.
In this section we will try to outline the salient aspects using the example

εy′′ + y′ + y2 = 0, y(0) = 2, y(1) = 1/2. (4.8)

We first observe that this problem does not have a unique solution for ε > 0. This is revealed when we apply the
direct method to the problem the results of which are presented for ε = 1 in Table 5.

It is important to say how these two solutions are computed. The two unknowns in the direct method are a1 and b1.
Since in what follows x = 0 attracts either an equal or lower weighting than x = 1, we choose to algebraically
eliminate a1 to obtain a single equation for b1 on which we can perform a real root search. In this way the required
five significant figure convergence is achieved for S1 by n = 6 while that for S2 we have to go to n = 12. The
numerical solution to the problem is problematical in that the MAPLE software only gives S1. The solution for S2

is obtained using iterative shooting from x = 0 with y(0) = 2 and H ′
23(0) as a starting value for y′(0). Now that we

have estimates for y′(0), we are in a position to search for singularities in the complex plane for S1 and S2 to check
that they do not affect convergence, by numerically solving the initial-value problem for y(x) for the complex form
of the nonlinear equation

εy′′ + y′ + y2 = 0 (4.9)
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with y(0) = 2 and either y′(0) = H ′
11(0) for S1 and y′(0) = H ′

23(0) for S2. This reveals singularities at x = xs =
−2.8341 and 6.5297 for S1 and x = xs = −0.93459 and 2.3855 for S2 with the behaviour, derived from (4.9),

Yi ∼ −6ε/(x − xs)
2

which are both well outside the critical ovals for µ = 1 and µ = 1/2. We have not been able to locate any other
singularities of the solutions in the complex plane nor are any indicated by convergence difficulties of the direct
method.

The two solutions to the problem scale in different ways in the limit ε → 0. The first solution scales according to

x = εz, y(x) = Y1(z),

so that

d2Y1

dz2 + dY1

dz
+ εY 2

1 = 0,

while the second solution scales like

x = εz, y(x) = Y2(z)/ε,

so that

d2Y2

dz2 + dY2

dz
+ Y 2

2 = 0

and we have the full equation in the boundary layer. Thus, from the standpoint of boundary-layer theory, only S1

offers us any tractability, so we concentrate on that solution from now on and continue to reduce ε using the direct
method. This presents no new difficulties and the results are presented in the upper half of Table 6 reducing ε to
0.05 by taking µ = 1/2. We note that we may locate the singularities of S1 for the indicated values of ε in the same
way as we did for ε = 1. In each case the singularities do not interfere with the convergence being well outside the
respective critical ovals when applying the direct method.

In implementing the two-scale method in the limit ε → 0 there are a number of new features that we have
to take account of. The nonlinearity generates terms involving products of exponentials which it is not necessary
to eliminate as secular terms. Thus, the differential equations we have to solve at each stage are inhomogeneous.
This is not a difficulty for MAPLE but it means in particular that we cannot write A0(z) in the form (3.30); hence
the boundary condition does not give β00(ε) explicitly in terms of α00(ε). Thus, we have to solve three nonlinear
algebraic equations for the triple {α00, β00, B1}. The results of these computations are given in the lower half of
Table 6.

5 Discussion

In the paper we have shown, using a two-scale technique, how we can obtain uniformly valid polynomial solutions
to two-point ordinary boundary-value problems involving a small parameter. A direct method is first applied and,
utilising the flexibility offered by fitting different numbers of end point derivatives, we may exploit the convergence
theory for Hermite expansions in the complex plane to reduce the value of the small parameter before the direct
method eventually fails. This failure can be obviated by using a two-scale method where, again using Hermite
expansions, we construct polynomials in the slow variable with coefficients that are functions of the fast variable.

The direct method invites comparison with other methods of constructing polynomial solutions to boundary-value
problems such as Chebychev collocation. These methods have the advantage over Hermite-expansion techniques
in that they always converge irrespective of the location of singularities of the solution, whereas the Hermite-
expansion method will only converge if the singularities lie outside certain prescribed domains. However, it has
the distinct advantage that the number of unknowns is fixed, whereas in collocation at selected points the number
of unknowns increases with the degree of the expansion. This is particularly important for nonlinear problems
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Table 6 Results for the solution S1 of the nonlinear problem εy′′ + y′ + y2 = 0, y(0) = 2, y(1) = 1/2 as ε is reduced

ε µ n y′
A(0) y′

A(1) yA(0.05) yA(0.5) xs Method

0.5 1 4 −.43173 −1.1029 1.9699 1.2627 Direct

6 −.43256 −1.1029 1.9698 1.2625

8 −.43252 −1.1029 1.9698 1.2625 −1.7449

16.151

Num −.43252 −1.1029 1.9698 1.2625

0.1 1 10 −6.3608 −.28737 1.7114 .72623

12 −6.3610 −.28740 1.7114 .72620

14 −6.3610 −.28740 1.7114 .72620 −0.72645

Num −6.3610 −.28740 1.7114 .72620

ms0 −9.0058 −.25145 1.6209 .68151

.05 1/2 8 −16.804 −.26443 1.4121 .68300

10 −16.805 −.26443 1.4121 .68259

12 −16.805 −.26443 1.4121 .68250 −0.40150

Num −16.805 −.26443 1.4121 .68251

ms0 −19.000 −.25000 1.4022 .66667

.05 5 −16.804 −.26446 1.4121 .68249 Two-scale

6 −16.805 −.26444 1.4121 .68248

7 −16.805 −.26443 1.4121 .68247

.01 3 −97.065 −.25253 .97205 .66923

4 −97.059 −.25257 .97211 .66933

5 −97.060 −.25256 .97210 .66931 −0.09263

Num −97.060 .25256 .97210 .66932

ms0 −99.000 −.25000 .95981 .66667

.001 3 −997.10 −.25025 .95356 .66691

4 −997.11 −.25025 .95356 .66693

5 −997.11 −.25025 .95356 .66692 −0.01146

ms0 −999.00 −.250 .95981 .66667

Comparison is made where possible with the numerical solution and the zero-order multiple-scales solution to the problem. The
singularities of S1 in the complex plane for various ε are shown in the xs -column

where in many cases, such as in the nonlinear example of Sect. 4, we may reduce the rootfinding problem to one
involving a single variable. In addition, by allowing the number of terms at the two end points to increase at
different rates in the convergence process, the Hermite method offers some inbuilt flexibility in allowing us to
modify convergence domains and thereby the possibility of maintaining convergence. For linear problems this can
often be done in advance since the singularities are determined by the equation. For nonlinear equations this is in
general not possible but progress can be made by following a strategy outlined in the nonlinear example of Sect. 4.

In the paper we compare the two-scale method with the zero-order multiple-scales result on the basis that in
computing an HN (x, z) fitting n0 and n1 terms at x = 0 and x = 1, respectively, where n0 = n1 = n and N = 2n +1,
we neglect terms O(ε) in An(z, ε). See Eq. (3.20) when n = 2. Although it is difficult to be more precise since, as
the tabulated results indicate, there is clearly some interplay with n as well as the error involved as ε → 0, the
method seems to work well in the limit.

Our method can be extended to cover more general boundary conditions and also to higher-order equations
or systems. We believe that the philosophy of approach could have wide application in boundary-value singular-
perturbation problems and will be a useful additional technique for applied mathematicians, engineers and scientists.
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Appendix 1: Hermite expansions with remainder

If f (t) is analytic in a simply connected domain D containing a simple closed contour C in the complex t-plane
enclosing t = z, the Cauchy integral formula states that

f (z) =
∫

C

f (t)

(t − z)
dt. (A.1)

We also suppose that C encloses t = 0 and t = 1. We can write (A.1) as

f (z) = 1

2π i

∫

C

{w(t) − w(z)}
(t − z)w(t)

f (t)dt + 1

2π i

∫

C

zn0(z − 1)n1

(t − z)tn0(t − 1)n1
f (t)dt = P(z) + R(n, z), (A.2)

where w(z) = zn0(z − 1)n1 . The integrand in P(z) has poles of multiplicity n0 and n1 at t = 0 and t = 1,

respectively, within C . Thus we can evaluate P(z) using the residue theorem, which reveals that it is a polynomial
of degree n0 + n1 − 1. Furthermore we can show that

P(r)(0) = f (r)(0), r = 0, 1, . . . .., n0 − 1

and

P(r)(1) = f (r)(1), r = 0, 1, . . . .., n1 − 1.

Thus, by uniqueness of HN (z)

P(z) ≡ HN (z)

and we have (2.3). In addition, by bounding | f (t)| and 1/|t − z| on C, we obtain

|R(n, z)| < K
∫

C

∣∣∣∣
zn0(1 − z)n1

tn0(1 − t)

∣∣∣∣ dt = K
∫

C

∣∣∣∣
zµ(1 − z)

tµ(1 − t)

∣∣∣∣
nq

dt,

where n0 = np, n1 = nq and µ = p/q for integers p and q. Thus |R(n, z)| → 0 and hence P(z) converges to
f (z) as n → ∞ provided f (z) is analytic inside the generalised Cassini oval Oµ for which
∣∣zµ(1 − z)

∣∣ < r0, (A.3)

where

r0 = inft∈C\D
{∣∣tµ(1 − t)

∣∣} .

Appendix 2: Multiple-scales solutions

Here we give the zero-order multiple-scales solutions for the examples in the main body of the paper.

I : εy′′ + y′ − xy = 0, y(0) = y(1) = 1; y(x) = Aex2/2 + Be−x2/2e−z + O(ε), 0 ≤ x ≤ 1, (A.4)

where A and B are obtained by applying the boundary conditions at x = 0 and x = 1.

II : εy′′ + (1 + x)y′ + 3xy = 0, y(0) = y(1) = 1; (A.5)
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y(x) = A (1 + x)−3 + B(1 + x)2e−(x+x2/2)/ε + O(ε), 0 ≤ x ≤ 1,

where A and B are obtained by applying the boundary conditions at x = 0 and x = 1.

III : εy′′ + y′ + y2 = 0, y(0) = 2, y(1) = 1/2;

y(x) = A0(x) + B0(x)e−x/ε + O(ε), 0 ≤ x ≤ 1, (A.6)

where

A0(x) = 1/(x + A), B0(x) = B(x + A)2.

Again A and B are obtained by applying the boundary conditions at x = 0 and x = 1.
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